蒸気を利用する多くの産業に適し、全ての産業の脱炭素に貢献する

DeCarboトラップ

DeCarbo(デカルボ)トラップはボイラー内の蒸気の中からドレンだけを排出して、蒸気を極力漏らさないという用途に用いられる自動弁の -種です。従来型のスチームトラップの課題を解決した、高性能・高耐久性の次世代型トラップです。

(スチームトラップ)との違い

従来品(スチームトラップ)の課題

エネルギーロス

ドレン水排出時に蒸気も排出してしまい、エネルギーロスが発生。 燃料コストやCO2排出などに影響します。

配管の破損

ドレン水によるウォーターハンマー現象※により配管が破損し、メン テナンス費用が発生します。

※配管内の蒸気がドレン化して配管や継手に高水圧と衝撃がかかる現象

ディスク式

様々な方式があるが、いずれも 蒸気漏洩を防ぐことはできません。

DeCarboトラップ導入のメリット

高耐久性

- ●総ステンレス製のため壊れにくい
- ●可動部がないため壊れにくい

高ドレン分離性能

●トラップ設置場所に合わせたノズル選択で 同伴蒸気を最小にし、大量蒸気漏洩を抑制

DeCarboトラップ

DeCarbo

快適作業環境実現

- ●トラップ稼働音、ウォーターハンマーなどの騒音対策
- ■蒸気漏洩を抑え、工場内の湿度、熱対策が可能に

ドレンのみを通すDeCarbo トラップで蒸気漏れを最小に 抑えます。

DeCarboトラップの構造

DeCarboトラップは、水と蒸気の「動粘度」の特性を生かし、特殊ノズルにより 蒸気を出さずにドレンを優先的に排出します。

本管 ノズル 蒸気の流れ 副管 ドレンの流れ ドレン(排水) ノズル構造

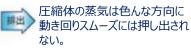
ノズル

DeCarboノズル

16種の口径 (0.1~4mm) のノズルから 適正ノズルを選択することで、スムーズなドレン排出 が可能となります。

飽和水 902.527kg/m3

排出



非圧縮体の水は圧力を受けて スムーズに押し出される。

飽和蒸気 3.666kg/m³

流体そのものの動きにくさを表す「動粘度」は、 水より蒸気が数十倍大きい。

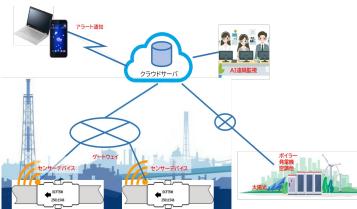
凝縮水と飽和蒸気が混在する状態

DeCarboトラップの導入効果

1. 燃料費削減・CO2削減効果

- ●蒸気漏れ抑制により、燃料費削減
- ●燃料や水使用量の削減によりCO2削減
- トラップごとのノズル最適化選定による蒸気漏洩削減

2. メンテナンスコスト削減


- ●可動部の損傷、破壊がないため、トラップ交換コスト、管理人件費ダウン
- ●安定ドレン排出でウォーターハンマーによる配管損傷削減
- ●運転蒸気量の削減で水・電気・軟水器薬剤などの周辺コスト削減・ボイラーのスケールダウンが可能

3. 生産性向上効果

- ●耐久性向上による交換人件費削減
- ドレンの連続排出で安定操業が実現
- ●本体1年保証でトラップにかかるTOTALコスト削減

遠隔監視ソリューション(EMS)

遠隔監視ソリューションによる効果

- エネルギーのリアルタイム計測による「見える化」
- ・エネルギーの運用状況の分析による「解る化」
- ・エネルギー設備の全体最適運用による「最適化」
- ・自主的な排出削減や吸収プロジェクトの実施
- ・カーボンクレジット認証対応

既設トラップとの検証実験の実施手順

1. 比較試験の実施 / ISO7841 簡易準拠法

導入予定箇所に既設トラップとの比較試験を実施し、ドレンおよび生蒸気の排出状態から省エネ効果を関係者全員 で共有します。

2. ノズル選定

- 導入予定箇所のドレン量が最大排出時の試験結果であることを確認し(または最大排出量を想定し)、適切なノズ ルを選定します。

3. 実稼働状態での試験

実稼働状態における蒸気量とドレン量の変動を把握し、ノズルの最適化を行います。

4.導入・設置工事

水質に応じてストレーナーの設置を検討し、ノズルの最適化を進めます。

5. メンテナンス・保守管理

一次側の温度を測定し、ノズルの詰まりをチェックします。その後、必要に応じてノズルを最適化します。 配管の詰まり・蒸気の効率化を図る為、既存のトラップの健康診断を行います。

※製品の仕様は予告なく変更になる場合がございます

Ver 1.0

株式会社DeCarboxn

DeCarbo

〒141-0022 東京都品川区東五反田1丁目10-7 AIOS五反田ビル6F